A Scaling and Non-Negative Garrote in Soft-Thresholding

نویسنده

  • Katsuyuki Hagiwara
چکیده

Soft-thresholding is a sparse modeling method typically applied to wavelet denoising in statistical signal processing. It is also important in machine learning since it is an essential nature of the well-known LASSO (Least Absolute Shrinkage and Selection Operator). It is known that soft-thresholding, thus, LASSO suffers from a problem of dilemma between sparsity and generalization. This is caused by excessive shrinkage at a sparse representation. There are several methods for improving this problem in the field of signal processing and machine learning. In this paper, we considered to extend and analyze a method of scaling of soft-thresholding estimators. In a setting of non-parametric orthogonal regression problem including discrete wavelet transform, we introduced component-wise and data-dependent scaling that is indeed identical to non-negative garrote. We here considered a case where a parameter value of soft-thresholding is chosen from absolute values of the least squares estimates, by which the model selection problem reduces to the determination of the number of non-zero coefficient estimates. In this case, we firstly derived a risk and construct SURE (Stein’s unbiased risk estimator) that can be used for determining the number of non-zero coefficient estimates. We also analyzed some properties of the risk curve and found that our scaling method with the derived SURE is possible to yield a model with low risk and high sparsity compared to a naive soft-thresholding method with SURE. This theoretical speculation was verified by a simple numerical experiment of wavelet denoising. key words: soft-thresholding, SURE, non-negative garrote, scaling, wavelet denoising

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Adaptive Thresholding in Marine RADARs

In order to detect targets upon sea surface or near it, marine radars should be capable of distinguishing signals of target reflections from the sea clutter. Our proposed method in this paper relates to detection of dissimilar marine targets in an inhomogeneous environment with clutter and non-stationary noises, and is based on adaptive thresholding determination methods. The variance and t...

متن کامل

Image Denoising Using Curvelet Transform

Denoising techniques that are based on modifying the transform of an image are considered here. In these techniques, a reversible, linear transform (such as transforms discussed in Chapter 2) is used to map the noisy image into a set of transform coefficients, which are then filtered using a suitable thresholding technique. Fig. 4.1 shows a typical denoising system that uses transform technique...

متن کامل

Analysis of scale-free networks based on a threshold graph with intrinsic vertex weights.

Many real networks are complex and have power-law vertex degree distribution, short diameter, and high clustering. We analyze the network model based on thresholding of the summed vertex weights, which belongs to the class of networks proposed by Phys. Rev. Lett. 89, 258702 (2002)]. Power-law degree distributions, particularly with the dynamically stable scaling exponent 2, realistic clustering...

متن کامل

The Use of Non-Negative Garrote for Order Selection of arx Models, Report no. LiTH-ISY-R-2876

Order selection of linear regression models has been thoroughly researched in the statistical community for some time. Different shrinkage methods have been proposed, such as the Ridge and Lasso regression methods. Especially the Lasso regression has won fame because of its ability to set less important parameters exactly to zero. However, these methods do not take dynamical systems into accoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 100-D  شماره 

صفحات  -

تاریخ انتشار 2017